Methyl N-Acetyl-7(S)-chloro-7-deoxylincosaminide (7). Acylation of 1 g of methyl 7(S)-chloro-7-deoxylincosaminide (4) with Ac₂O in MeOH gave after recrystallization from EtOAr-Skellysolve B¹⁸ 930 mg of 7, mp 174-176°. The rotation was $\pm 290^{\circ}$ (MeOH). Anal. (C₁₃H₂₀ClO₅NS) C, H, Cl, N.

Solvolysis of Methyl N-Acetyl-7(S)-chloro-7-deoxythiolincosaminide (7), --A solution of 2.0 g of 7 in 80 nd of H₂O was heated at reflux for 5.5 hr. The (CHCk-MeOH, 4:1) showed the gradual disappearance of 7, with two slower spots gradually increasing in roncentration. The solution was lyophilized. The residue was chromatographed over silica ged using CHCl₈-MeOH (4:1) for ehttion. A fraction of 110 mg, identified by the as 7, was chuted in the early fractions. This was followed by a 155-mg and a 1.06-g fraction, respectively. Crystallization of the major fraction from MeOH gave 470 mg of crufts 8, mp 222-226°. Recrystallization afforded 360 mg of trystals, np 255-258°, whose infrared spectrum was identical with a known sample of 8.4 D mother experiment, a fraction similar to the 155-mg fraction from above gave a product, mp 178-182°, whose infrared spectrum was very similar to that of 8 suggesting the 7(S) isomer.

Attempted Solvolysis of Methyl N-Trifluoroacetyl-7(8)-chloro-7-deoxythiolincosaminide (6).—A solution of 500 mg of 6 in 30 ml of H₂O was heated under reflux for 18 hr. The (CHCl₃~MeOH, 6:1) indicated chiefly intreacted 6, and also a small amount of a slower moving spot, but no 7-hydroxy rompound 5. When worked up as above 220 mg of recovered 6 and 55 mg of a more polar oil which resisted rrystallization were obtained. Crystallization from *i*-PrOH afforded 110 mg of 6, mp 72-81°. Ir data confirmed the identity of 6.

1'-Carbobenzoxy-1'-demethylclindamycin (*vis-trans*) (10, $\mathbf{R} = u$ -C₃H₇).—1-Carbobenzoxy-4-(*vis* and *trans*)-*a*-propyl-Lproline⁶ (2.33 g) was dissolved in 150 ml of MeCN routaining 1.12 nl of Et₃N. The solution was cooled to 0° and 1.18 nl of isobutyl chloroformate added. After 10 min at 0°, a solution of 2.17 g of 4 in 40 ml of MeCN and 40 ml of H₂O was added. The mixture was stirred for 2 hr at ambient temperature and the MeCN distilled *in vacuo* to yield rrystals which were collected by filtration. The yield of 10, mp 180–183°, was 3.56 g. Recrystallization (EtOH) raised the melting point to 189–192°. *Anal.* (C₂₅H₃₇ClN₂O/S) C, H, Cl, N.

1-Carbobenzoxy-1'-demethylclindamycin~(14).--1'-Demethyl-lincomychi hydrochloride~(428 mg) was treated with carbobenzyl-

(18) A saturated hydrocarbon fraction, bp 60-71°, Skelly Oil Co., Kansas ${\rm City}_{3}$ Mo.

oxy chloride¹⁹ to yield 500 mg of 14, mp 152–165°. Recrystallization (EtOAr H₂O) gave 350 mg of 14, mp 173–177°. Two recrystallizations from the same solvent afforded crystals, mp 176–178°, $|\alpha|_{\rm D} = \pm 109^\circ$. Anal. (C₅₀H₄₈N₂O₈S) C, H, N.

1'-Demethylclindamycin (*cis* and *trans*) Hydrochloride (11b). A solution of 22.9 g of 10 was dissolved in 500 ml of MeOH and 6 g of 10% Pd-C was added. Hydrogenolysis and coystallization was as previously described.³ The yield of 11b, mp 218-223° dec, was 15.8 g (80.2%). Recrystallization (Ar.Me. H₂O) afforded 10.7 g of 11b, mp 228-254° dec, $\lceil \alpha \rceil p + 159°$ (H₂O). Further dilution with Ac.Me gave 2.96 g of second propertystals, mp 226-250° dec.

1'-Demethyl-4'-depropyl-4'-pentylclindamycin (11e). Triphenylphosphine (22–g) in 400 ml of MeCN was treated with 5.68 g of Cl₂ to produce a colorless solution of $(C_{\rm g}H_3)_{\rm s}PCl_2$. To this solution 4 g of 1'-demethyl-4'-depropyl-4'-pentyllincomycinhydrochloride (12)³ was added. After stirring at 26° for 18 hr, 15 ml of MeOH was added. After stirring at 26° for 18 hr, 15 ml of MeOH was added and the solvent distilled *ia vacao*. The residue was shaken with 250 ml of EtOAc-Et₂O (1:4) and filtered. The residue (13.7 g) was partitioned between H₂O and EtOAc and the product was recovered from the aqueous solution by lyophilizing. This residue of 8.5 g was further purified by chromatography over silica gel using CHCl₄-MeOH (4:1) for rhution. The major fraction of 2.09 g was dissolved in ArMe and aridified with HCl to give analytically pure 11e, mp 222-223°. Anal. (C₁₂H₃₆Cl₂N₂O₅S) C, H, N, S.

1'-Demethylclindamycin Hydrochloride (11c). Method A.--1'-Demethyllincomycin hydrochloride (3) (1.72 g) was chlorinated as above to give hydrochloride 11c, mp 212-216°, weighing 0.75 g (40.8%). Recrystallization (ArMe-H₂O) gave 550 mg of hydrochloride, mp 217-221° dec, $|\alpha|$ p +155° (H₂O). Anal. (C₁:H₃₂-Cl₂N₂O₈S) C, H, N, S.

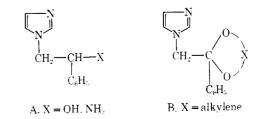
Method B. - One gram of 14 was chlorinated and subjected to hydrogenolysis; after chromatography it gave 103 mg of 11c. This product was converted to its crystalline hydrochloride and identified on the basis of the data. It melted at $227-220^{\circ}$ and weigher 95 mg.

Acknowledgment. The authors are indebted to Dr. D. J. Mason and C. Lewis for antibacterial and antimalarial testing and to R. J. Reid for technical assistance.

(19) J. P. Greenstein and M. Winitz, "Chemistry of the Amino Acids," Vol. 2, John Wiley and Sons, Inc., N. Y., 1961, p 891.

The Preparation and Antimycotic Properties of Derivatives of 1-Phenethylimidazole

Erik F. Godefroi, Jan Heeres, Jan van Cutsem. and Paul A. J. Janssen


Research Laboratoria, Junssen Pharmacentica a.v., Beerse, Belgium

Received A pril 7, 1969

The synthesis of a large number of β -substituted 1-phenethylimidazoles is described. Many appropriately N-substituted 1-(β -aminophenethyl)imidazoles and cyclic ketals derived from 2-(1-inidazolyl)acetophenones were quite active against dermatophytes. However, 1-(β -benzyloxyphenethyl)imidazoles displayed potent, broad-spectrum activity, not only against dermatophytes but also against yeast cells (*Candida albicans*) and gram-positive bacteria.

For some years interest in our laboratories has been directed toward the synthesis and biological evaluation of imidazole derivatives.^{1,2} As part of this program we prepared a series of 1-phenethylimidazoles, when it became apparent that certain O- and N-substituted derivatives of α -phenylimidazole-1-ethanol (A, X = OH) and 1-(β -aminophenethyl)imidazole (A, X =

⁽²⁾ E. F. Godefroi, J. van Critsen, C. A. M. Van der Eycken, and P. A. J. Janssen, *ibid.*, **10**, 1160 (1967).

NH₂), respectively, displayed outstanding and broadspectrum antimycotic activity. This observation

⁽¹⁾ E. F. Liodefeoi, P. A. J. Janssen, C. A. M. Van der Eycken, A. H. M. T. Van Heertmin, and C. J. E. Nieniegeers, J. Med. Chem., 8, 220 (1965).

				R'	Ö			
Compd	R	$\mathbf{R'}$	Ar	Method	Yield. %	Mp. °C	Formola	Analyses
1	Н	Н	5-Chloro-2-thienyl	Α	69	160 - 162	$C_{9}H_{7}ClN_{2}OS \cdot HNO_{3}$	С, Н
2	\mathbf{H}	Н	2-Thienyl	в	$\overline{23}$	136 - 138	$C_9H_8N_2OS HNO_3$	C, H, N
3	Η	Η	2_4 -Cl ₂ C ₆ H ₃	в	71	169-170	$\mathrm{C}_{11}\mathrm{H}_{8}\mathrm{Cl}_{2}\mathrm{N}_{2}\mathrm{O}\cdot\mathrm{HNO}_{3}$	C, H, N
4	Η	Η	$p ext{-}\mathrm{BrC_6H_4}$	в	46	167 - 168	$C_{11}H_{2}B_{1}N_{2}O$	С, Н, N
5	Η	Н	o-ClC6H4	в	69	179 - 180	C_1 , H_9 Cl N_2 O · HNO ₃	С, Н
6	Η	Н	$p ext{-} ext{ClC}_6 ext{H}_4$	\mathbf{A}	77	160 - 161	$C_{11}H_9CiN_2O$	
						228 - 229	$C_{11}H_9ClN_2O\cdot HCl$	C, H, N
7	Η	Н	$p ext{-}\mathrm{FC}_6\mathrm{H}_4$	в	58	154 - 156	$C_{11}H_9FN_2O$	C, H, N
8	Н	\mathbf{H}	C_6H_5	А	62	117 - 118	$\mathrm{C}_{11}\mathrm{H}_{10}\mathrm{N}_{2}\mathrm{O}^{3}$	C, H, N
9	CH_3	Η	C_6H_3	А	80	139 - 140	$\mathrm{C}_{12}\mathrm{H}_{12}\mathrm{N}_{2}\mathrm{O}\cdot\mathrm{HNO}_{3}$	С, Н
10	Η	Н	$o\text{-}\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	В	57	167 - 168	$C_{12}H_{12}N_2O \cdot HNO_3$	С, Н
11	Н	Н	$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$	В	5 9	136 - 138	$C_{c2}H_{12}N_2O$	С, Н
12	Η	Н	$o\text{-}\mathrm{CH}_3\mathrm{OC}_6\mathrm{H}_4$	В	49	220 - 221	$C_{cc}H_{12}N_2O_2 \cdot HCl$	C, H, N
13	Η	Η	$p ext{-} ext{CH}_3 ext{OC}_6 ext{H}_4$	В	77	171 - 172	$C_{12}H_{2}N_2O_2 \cdot HNO_3$	C, H, N
14	CH:	CH_3	C_6H_{2}	В	45	167-168	$C_{3}H_{3}N_{2}O \cdot HNO_{3}$	С, Н, N

prompted an expansion of our synthetic efforts, encompassing a large number of derivatives of A in order to investigate the structure-activity relationships governing this class of compounds. Moreover, during the course of this work it was found that many cyclic ketals derived from 2-(1-imidazolyl)acetophenone, *i.e.*, type B, showed significant biological activity. In the present paper we wish to report the synthesis and antimycotic and antibacterial properties of compounds derived from and related to A and B.

Chemistry.—The 2-(1-imidazolyl)acetophenones (compounds 1-14, Table I), required as starting materials, were prepared by the reaction of the aryl bromoalkyl ketones with excess imidazole in MeCN or DMF at room temperature (method A). The literature method³ for preparing 8 in alcohol was tried but was unsatisfactory as it led primarily to quaternary salts. Our method was subsequently simplified by brominating the prerequisite acetophenone followed by treatment of the crude reaction mixture with a fivefold excess of imidazole (method B).

The reaction of α -bromopropiophenone with imidazole furnished **9** in 68% yield. Its authenticity was established by its identity to the methylation product of the anion of **8** [hexamethylphosphoramide (HMPA)/ NaH]. Compound **14** was prepared by successive treatment of isobutyrophenone with Br₂ and imidazole.

 α -Arylimidazole-1-ethanols, shown in Table II, were obtained by three methods. Compound A (X = OH) was produced conveniently and directly by the basecatalyzed reaction of imidazole and styrene oxide, but commercial inaccessibility of substituted aromatic epoxides made extension of this method unpractical. NaBH₄ reduction of the ketones gave the desired alcohols in excellent yields (method C). Previous experience⁴ had shown that the imidazole anion was most advantageously alkylated in a dipolar aprotic solvent such as DMF. Therefore sodium imidazole

(3) German Patent 488.681 (1954); F. K. Beilstein, "Handbuch der Organischen Chemie," Vol. 23 (II), p 37.

was treated with α -bromomethyl-*p*-chlorobenzyl alcohol in DMF, giving **19** in 83% yield (method D). This method also allowed for the preparation of tertiary alcohols **22** and **24**, since the prerequisite chlorohydrins are accessible from the reaction of chloroacetone and Grignard reagents.⁵

When the oxime of 8 was hydrogenated in the presence of Raney Ni, compound A ($X = NH_2$) was obtained. Schemes involving catalytic reductions precluded preparation of halogenated derivatives, so that attention was focussed on treatment of the ketones with a variety of amines to yield the corresponding imines. Reduction of the latter by NaBH₄ gave amines **28-54** (see Table III). Performing the reduction at 5-25° was found to be essential, as even at these temperatures the reaction was at times accompanied by formation of dibenzylamines. Elevated temperatures promoted this side reaction.

The sodium salts of alcohols 15–27 reacted smoothly with benzyl chlorides in DMF, THF, or HMPA, most favorable results being obtained with the latter at 5–25°. The resultant ethers are listed in Table IV. Nitrophenyl ethers 56 and 57 were obtained by treatment of the appropriate alcohol anions with *p*-mitrofluorobenzene or 2,4-dimitrochlorobenzene. Chemical reduction (Fe-aqueous NH₄Cl) furnished amine 58.

Initial efforts to ketalize 8 by conventional procedures were unsatisfactory, due to unacceptably low conversions. Attention was therefore turned to the direct alkylation of sodium imidazole with 2-bromomethyl-2aryldioxolanes and the corresponding 1,3-dioxanes in DMF. Some of the dioxolanes had already been prepared by Patel and Oneto.⁶

Our own approach was prompted by work of Garbish,⁷ and consisted of brominating acetophenones in the appropriate 1,2- or 1,3-diol. This gave **96-114** in fair to good yields. Oftentimes ketalization had to be

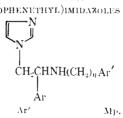
(6) A. R. Pate) and J. F. Oneto, J. Pharm. Sci., 52, 588 (1963).

⁽⁴⁾ E. F. Godefroi, J. Org. Chem., 33, 860 (1968).

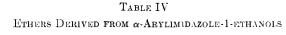
⁽⁵⁾ M. S. Malinovskii and A. G. Yudasina, Zh. Obshch. Khim., **30**, 1831 (1960); Chem. Abstr., **55**, 7341 (1961).

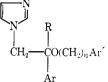
⁽⁷⁾ E. W. Garbish, Jr., J. Org. Chem., 30, 2109 (1965).

Vol. 12


TABLE H Re-ARYLIMIDAZOLE-1-LTHANOLS R H₂C-C-

-Ar


				ÓН			
Campi)	11	Ar	Met)od	Yietə, 💥	Mp, °C	Formula	Anatyses
15	Н	5-Chlorn-2-thienyl	С	85	136 - 137	C ₉ H ₃ CIN ₂ OS	C, H, N
16	Н	2,4-Cl ₂ C ₆ H ₃	C!	78	154 - 135	$C_{11}H_{10}CI_2N_2O$	C, H, N
17	Н	$p ext{-}\mathrm{BrC}_6\mathrm{H}_4$	\mathbf{C}	8_{t}^{\pm}	191 - 192	$C_{11}H_{11}BrN_2O$	$C_{1}H_{1}N$
18	H	o-ClC6H4	С	84	99-100	$C_0H_1CIN_2O$	C, 11
10	H	$p extsf{-ClC_6H_1}$	\mathbf{C}	99	185 - 184	$C_0H_mCIN_2O$	C, H, N
			Ð	83			
20	H	p-FC ₆ H ₄	С	96	148 - 149	$C_{11}H_{11}FN_2O$	C, II, N
21	I I	C ₆ H ₅		39	149 - 150	$C_{12}H_{12}N_2O$	C, H, N
22	CH_2	p-CIC ₆ H ₄	Ð	81	159-140	$C_{12}H_{13}CIN_2O$	C, H, N
23	H	o-CH ₃ C ₆ H ₄	C	83	131 - 132	$\mathrm{C}_{12}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}\cdot\mathrm{HNO}_{3}$	C, H, N
24	CH_{3}	C_6H_5	\mathbf{D}	75	121 - 122	$C_{12}H_{14}N_2O$	C, H, N
25	11	p-CH ₃ C ₆ H ₄	С	90	156 - 157	$\mathrm{C}_{12}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}$	C, H, N
26	Н	$o ext{-} ext{CH}_3 ext{OC}_6 ext{H}_4$	\mathbf{C}	89	173 - 174	$C_{c2}H_{14}N_2O_2 \cdot HC1$	C, H, N
27		NC(CH_1CHOH)C,H_	C	79	$129 \cdot 130$	$C_{16}H_{16}N_2O$	$C_t \to D_t N$


TABLE IH

N-SUBSTITUTED 1-(β -Aminophenethyl)imidazoles and Related Compounds

			Ar			
Compd	71	Ar	۸r′	$M_{12} \circ C$	Formola	Analyses
28	1	2-Thienyl	μ -CIC ₆ H ₄	248-250	C ₁₆ H ₁₆ CIN ₃ S·2HCI	C, H. N
29	Ð	p-CIC ₆ II	C ₆ H ₅	180 - 181	C ₀ H ₆ CIN ₃ 2HCI	С, Н
50	Ð	$C_6 H_5$	C_6H_5	176 - 178	C_1 , H_1 , N_3 , 2 HCl	C, H, N
31)	p-FC ₆ H,	o-CIC ₆ H)	211 - 212	C ₁₈ H ₁₇ CIFN ₃ 2HNO ₃	C, H, N
32	1	p-FC ₆ H ₁	μ -CIC ₆ H)	210/211	C ₆ H ₁₅ ClFN ₃ 2HNO ₃	С, Н
;;;;	1	p-CIC ₆ H ₁	o-ClC ₆ II ₄	194 - 195	C ₁₈ H ₁₇ Cl ₂ N ₃ · 2HNO ₃	$C_{1}H_{1}N$
::-1	1	C_8H_{2}	p -CIC ₀ H $_1$	263 - 264	CtsHtsClN3+2HCl	$C_{1}H_{1}N$
35	1	C_6H_4	o-CIC ₆ H ₄	254 - 256	C ₁₈ H ₁₈ CIN ₃ ·2HCI	C, H, N
36	1	p-FC ₆ H ₄	C_6H_5	218-219	CosH18FN3 · 2HNOa	C, H, N
37	1	C_0H_5	C_0H_0	253-255	$C_{18}H_{19}N_3 \cdot 2HCl$	С, Н
58	2	p-ClC ₆ H ₄	$C_6H_{\tilde{e}}$	147-148	$C_{19}H_{20}CIN_3\cdot 2HNO_8$	C, 11
320	1	p-CIC ₆ H ₄	p-CH ₃ C ₆ H ₄	270 - 274	$C_{19}H_{20}CIN_3 \cdot 2HCI$	С, Н
-40	1	p-CH ₃ C ₆ H ₄	p-ClC ₆ H ₄	256 - 258	C ₁₉ H ₂₀ ClNa 2HCl	C. 11
41	1	p-CIC ₆ H ₄	p-CH ₃ OC ₆ H ₁	237 - 238	$C_{19}H_{20}CIN_3O \cdot 2HCI$	C, H, N
42	2	p-FC ₆ H,	$C_{6}H_{5}$	153, 154	C19H20FN3+2HNO3	C. H, N
43	1	p-FC ₆ H,	p-CH _a C ₆ H ₄	225 224	$C_{19}H_{20}FN_3 \cdot 2HNO_3$	С, П
-1-t	1	p-FC ₆ H ₁	p-CH ₃ OC ₆ II)	168 - 170	$C_{19}H_{26}FN_3O\cdot 2HNO_3$	C, H, N
45	1	C_6H_5	p-CH ₃ C ₆ H ₂	$261 \cdot 263$	$C_{19}H_{21}N_3 \cdot 2HCI$	C, H, N
46	2	C_6H_5	C_8H_5	166-167	C12H21N3 · 2HNO2	C, H
47	L	C_6H_5	ρ -CH ₃ OC ₆ H.	252 - 253	$C_{19}H_{21}N_3O\cdot 2HCl$	С, Н
48	2	p-CH ₃ C ₆ H ₄	C_6H_5	155 156	$C_{19}H_{23}N_3 \cdot 2HNO_3$	C. II, N
49	1	p-CH ₃ C ₆ H ₄	p-CH ₃ OC ₆ H ₄	245-247	$C_{20}H_{23}N_3O\cdot 2HCI$	C, H, N
50	1-Im-($CH \sim CHNHCH_2 - p - CH$	C ₆ H _c	256-257	$\mathrm{C}_{19}\mathrm{H}_{20}\mathrm{ClN}_{3}$ · 211 CI	U, II, N
	(CH₄ C ₆ H.				
õ1		CHCHNHCH₂C₀U.		251 - 252	$\mathrm{C}_{18}\mathrm{H}_{21}\mathrm{N}_{32}(211\mathrm{Cl}$	C, Π
52		ˈ/H₃ - C₀H₅ CH₂CHNHCHC₀H₅		165-169	$C_{10}H_{21}N_{31}\cdot 2HNO_3$	C, H, N
.)_	1-111-0			105-105	C1011211Na+2111NO3	0, 11, 18
		C ₆ H ₅ CH ₃				
53	1-Im-(CH2CHNH-1-tetralyl		198-199	C_2 , $H_{22}CIN_3 \cdot 2HCI \cdot 3H_2O$	C, II, N
54		-CłC6H4 CH2CHNH-1-tutrałył		139-140	$\mathbb{C}_{21}\mathrm{H}_{23}\mathrm{N}_{3}\mathrm{\odot}2\mathrm{HNO}_3$	C. II. N
, -				• • • • • •		. ,
		() IT				

				Ar			
Compd	n	R	Ar	Ar′	Mp.°C	Formu)a	Analyses
55	1	Н	5-Chloro-2-thienyl	o-ClC ₆ H ₄	125 - 126	$\mathrm{C_{16}H_{14}Cl_2N_{\odot}OS \cdot HNO_3}$	С, Н
56	0	Н	2,4-Cl ₂ C ₆ H ₃	$2,4-(NO_2)_2C_6H_3$	167 - 168	$\mathrm{C_{17}H_{12}Cl_2N_4O_5}\cdot\mathrm{HNO_3}$	С, Н
57	0	Н	$2,4$ - $Cl_2C_6H_3$	p-NO ₂ C ₆ H ₄	169 - 170	$\mathrm{C}_{17}\mathrm{H}_{\mathrm{c}3}\mathrm{Cl}_{2}\mathrm{N}_{3}\mathrm{O}_{3}\cdot\mathrm{HNO}_{3}$	C, H
58	0	Н	2_14 -Cl ₂ C ₆ H ₃	$p m -NH_2C_6H_4$	95 - 96	$\mathrm{C}_{17}\mathrm{H}_{15}\mathrm{Cl}_2\mathrm{N}_3\mathrm{O}$	C, H, N
59	1	Н	2_4 -Cl ₂ C ₆ H ₃	2,4-Cl ₂ C ₆ H ₃	184 - 185	$C_{18}H_{14}CI_4N_2O\cdot HNO_3$	С, Н, N
60	1	Н	2_1 4-Cl ₂ C ₆ H ₃	2,6-Cl ₂ C ₆ H ₃	182 - 183	$\mathrm{C_{18}H_{14}Cl_{4}N_{2}O\cdot HNO_{3}}$	C, H, N
61	1	Н	$p ext{-}\mathrm{FC}_6\mathrm{H}_4$	$2,4$ - $Cl_2C_6H_3$	120 - 121	$C_{18}H_{15}Cl_2FN_2O\cdot HNO_3$	C, H, N
62	1	Н	$2_{4} - Cl_{2}C_{6}H_{3}$	$p ext{-}\mathrm{FC}_6\mathrm{H}_4$	139 - 140	$C_{18}H_{15}Cl_2FN_2O \cdot HNO_3$	C, H, N
65	1	Η	$2, 4$ - $Cl_2C_6H_3$	$o-\mathrm{FC}_{6}\mathrm{H}_{4}$	147 - 148	$\mathrm{C_{18}H_{15}Cl_2FN_2O\cdot HNO_3}$	C, H, N
64	1	Н	2, 4-Cl ₂ C ₆ H ₃	$o ext{-ClC}_6 ext{H}_4$	151 - 152	$\mathrm{C}_{18}\mathrm{H}_{15}\mathrm{C}\mathrm{I}_{3}\mathrm{N}_{2}\mathrm{O}\cdot\mathrm{HNO}_{3}$	С, Н, N
65	1	н	p-ClC ₆ H ₄	$2,6$ - $Cl_2C_6H_3$	144 - 145	$C_{t_8}H_{15}Cl_3N_2O\cdot HNO_3$	С, Н, N
66	1	Н	2,4-Cl ₂ C ₆ H ₃	p-ClC ₆ H ₄	164 - 165	$\mathrm{C_{18}H_{15}Cl_{3}N_{2}O\cdot HNO_{3}}$	C, H, N
67	1	Н	$p ext{-} ext{ClC}_6 ext{H}_4$	$2,4$ - $Cl_2C_6H_3$	119 - 120	$\mathrm{C_{18}H_{15}Cl_{3}N_{2}O\cdot HNO_{3}}$	С, Н
68	1	Н	o-ClC6H4	$2, 4 - Cl_2C_6H_3$	127 - 128	$\mathrm{C_{18}H_{15}Cl_{3}N_{2}O\cdot HNO_{3}}$	С, Н
69	1	н	$p\operatorname{-BrC_6H_4}$	$o\text{-ClC}_6\mathrm{H}_4$	124 - 125	$C_{18}H_{6}BrClN_2O\cdot HNO_3$	С, Н, N
70	1	Н	p-BrC ₆ H ₄	p-ClC ₆ H ₄	160 - 161	$C_{18}H_{16}BrCIN_2O \cdot HNO_3$	$C_{\mu}H_{\mu}N$
71	1	Η	$p ext{-}\mathrm{FC}_6\mathrm{H}_4$	$p ext{-}\mathrm{ClC_6H_4}$	122 - 123	$C_{18}H_{16}ClFN_{2}O \cdot HNO_{3}$	C_{i} H, N
72	1	Н	$p\operatorname{-FC_6H_4}$	$o\text{-ClC}_6H_4$	95-96	$C_{18}H_{16}CIFN_2O \cdot HNO_3$	$C_{\mu}H_{\mu}N$
73	1	Η	o-ClC ₆ H ₄	o-ClC ₆	161 - 162	$C_{18}H_{16}CI_2N_2O$ HNO ₃	$C_{\mu}H_{\mu}N$
74	1	н	$p ext{-}\mathrm{ClC_6H_4}$	$o-\mathrm{ClC}_6\mathrm{H}^8$	125 - 126	$C_{t_8}H_{16}Cl_2N_{\odot}O \cdot HNO_0$	$C_{\mu}H_{\mu}N$
75	1	Η	o-ClC ₆ H ₄	$p ext{-} ext{ClC}_6 ext{H}_6$	129 - 130	$\mathrm{C}_{18}\mathrm{H}_{16}\mathrm{Cl}_{2}\mathrm{N}_{2}\mathrm{O}\cdot\mathrm{HNO}_{3}$	C_{1} H ₁ N
76	1	Η	$p ext{-} ext{ClC}_6 ext{H}_4$	$p ext{-}\mathrm{ClC_6H_4}$	154 - 155	$C_{18}H_{16}Cl_2N_2O\cdot HNO_3$	С. Н, М
77	1	Н	C_6H_5	p-ClC ₆ H ₄	136 - 137	$C_{18}H_{11}CIN_{2}O \cdot HNO_{3}$	C_{i} H _i N
78	1	Η	C_6H_3	C_6H_a	90 - 91	$C_{18}H_{18}N_2O \cdot HNO_3$	$C_{\mu}H_{\mu}N$
79	1	CH_3	$p ext{-}\operatorname{ClC_6H_4}$	$2,4$ - $Cl_2C_6H_3$	167 - 168	$C_{19}H_{17}Cl_3N_2O \cdot HNO_3$	С, Н, N
80	1	Н	$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$	$2,4$ - $Cl_2C_6H_3$	129 - 130	$C_{16}H_{18}Cl_2N_2O\cdot HNO_3$	$C_{i} H_{i} N$
81	1	\mathbf{H}	$o -\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	$2,4$ - $\mathrm{Cl}_2\mathrm{C}_6\mathrm{H}_3$	138 - 139	$C_{19}H_{18}Cl_2N_2O\cdot HNO_3$	С, Н
82	1	$\rm CH_3$	C_6H_5	$2,4$ - $Cl_2C_6H_3$	187 - 188	$C_{19}H_{18}Cl_2N_2O\cdot HNO_3$	C, H
85	1	CH_{a}	$p ext{-}\mathrm{ClC}_6\mathrm{H}_4$	$p ext{-} ext{ClC}_6 ext{H}_4$	172 - 173	$C_{19}H_{48}Cl_2N_4O \cdot HNO_9$	C_{i} H _i N
84	1	Η	$2,4-Cl_2C_6II_3$	o-CH ₃ C ₆ H ₄	124 - 125	$C_{12}H_{18}Cl_2N_2O \cdot HNO_3$	С. Н
85	1	Н	o-CH ₃ C ₆ H ₄	$2,4$ - $Cl_2C_6H_3$	131 - 132	$C_{13}H_{18}CI_2N_2O_2\cdot HNO_3$	C. H, N
86	1	Н	2 , 4 - $Cl_2C_6H_3$	m-CH ₃ OC ₆ H ₄	114 - 115	$C_{0}H_{18}Cl_2N_2O_2\cdot HNO_3$	C_{i} H _i N
87	1	Η	$2, 4$ - $Cl_2C_6H_3$	$p ext{-} ext{CH}_3 ext{OC}_6 ext{H}_4$	149 - 150	$C_{19}H_{18}Cl_2N_2O_2 \cdot HNO_3$	C, H
88	1	Н	$p ext{-} ext{ClC}_6 ext{H}_4$	$o ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$	135 - 136	$C_{10}H_{19}CIN_2O\cdot HNO_3$	С, Н, Х
89	1	Н	$p -\mathrm{CH_3C_6H_4}$	$o ext{-ClC_6H_4}$	125 - 126	$C_{19}H_{19}CIN_2O\cdot HNO_3$	C_{i} H _i N
90	1	Н	$o -\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	$o ext{-} ext{ClC}_6 ext{H}_4$	166 - 167	$C_{19}H_{19}ClN_2O\cdot HNO_3$	С, Н, Х
91	1	CH_3	$C_6H_{\mathfrak{z}}$	$p ext{-}\mathrm{ClC}_6\mathrm{H}_4$	172 - 173	$C_{19}H_{19}CIN_2O \cdot HNO_3$	С, Н, Х
92	1	Н	$o-\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	$p ext{-}\mathrm{ClC_6H_4}$	125 - 126	$C_{12}H_{12}CIN_2O \cdot HNO_3$	С, Н, Х
93	1	Н	$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$	$p ext{-ClC_6H_4}$	122 - 123	$C_{19}H_{19}CIN_2O \cdot HNO_3$	$C_{\mu}H_{\mu}N$
94	1	Н	o-CH ₃ OC ₆ H ₄	$o ext{-} ext{ClC}_6 ext{H}_4$	160-161	$C_{19}H_{19}CIN_2O \cdot HNO_3$	$C_{\rm F}$ H _e N
9.5	1- Im	$1 - C(CH_3)_2C$	$HOCH_2C_6H_4$ - p -Cl		Bp 190-200	$\mathrm{C}_{20}\mathrm{H}_{21}\mathrm{ClN}_{2}\mathrm{O}$	С, Н
					(0.4 mm)		
		С	₆ H.				

driven to completion by azeotropic removal of H_2O with C_6H_6 (method E), but this was unnecessary for **101**, **103**, **104**, and **105**, which crystallized out of the crude bromination mixture (method F). All bromides were then treated with sodium imidazole in DMF to furnish ketals **115–134** which were best isolated as *nitrate salts*. A compilation of ketals is offered in Table V.

Biological Results.—All compounds described were tested against an array of microorganisms according to the method described earlier.² The *in vitro* assays were conducted primarily on Aspergillus fumigatus, on the yeast Candida albicans, the dermatophytes Microsporum canis, Trichophyton rubrum, and Trichophyton mentagrophytes, the gram-positive bacteria Erysopelotrix insidiosa and Staphylococcus hemolyticus, and on the gram-negative Escherichia coli.

The test results are given in Tables VI-VIII and have been recorded as the lowest dose levels causing total inhibition of the substrates' growth. For comparative purposes etonam, tolnaftate, griseofulvin, diamthazole, and nystatine were assayed concurrently with our compounds and these test results have been included in Table VIII.

The amines shown in Table VI were found to be moderately active against dermatophytes, but essentially inactive against yeasts and bacteria. The poor activity of the parent compound **37** was somewhat improved by phenyl substitution and the highest potency was achieved by introduction of *para* substituents (**32**,

$T_{ABLE} N$	
2.2-Disugstituted Dioxolanes and L3-Dioxany	8

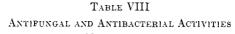
				~Z-			
(****01**)	Ne	X	Z	Metian)	Bp (mm) or mp, ≤C	Formala	Analyses
96	2-Thienył	Br	$(CH_2)_2$	E	90-95 (0.6)	$C_8H_9BrO_2S$	C_1H
97	2,5,4-ClaC6H2	Br	$(CH_2)_2$	Е	58~59	$C_{10}H_8BrCI_3O_2$	C, H
98	$2_{1}5$ - $CI_{2}C_{6}H_{3}$	Br	$(CH_2)_2$	E	60-61	$C_{19}H_{9}BrCl_{2}O_{2}$	С, Н
99	$o\operatorname{-CIC_6H_4}$	\mathbf{Br}	$(CH_2)_2$	\mathbf{E}	125-130 (0.8)	$C_{10}H_{10}BrClO_2$	C, H
100	m-CIC ₆ H ₄	Br	$(CH_2)_2$	Б	39-40	$C_{10}H_{10}BrClO_2$	$C_{*}H$
101	ρ-CłC ₆ H ₄	Br	(CH ₂) ₂	\mathbf{F}	61 - 62	$\mathrm{C}_{\mathrm{10}}\mathrm{H}_{\mathrm{0}}\mathrm{BrClO}_2$	
102	p-FC ₆ H ₄	Br	$(CH_2)_2$	E	48-49	$\mathrm{C}_{\mathrm{to}}\mathrm{H}_{\mathrm{10}}\mathrm{BrFO}_2$	C, H
103	p-NO ₂ C ₆ H _c	Br	$(CH_2)_2$	F	150-151	$\rm C_{b}H_{10}BrNO_{4}{}^{5}$	
104	p-BrC ₆ H,	Br	$(CH_2)_2$	E	78-80	$\mathrm{C}_{16}\mathrm{H}_{10}\mathrm{Br}_{2}\mathrm{O}_{2}{}^{6}$	
10.5	C_6H_5	Br	(CH ₂) ₂	\mathbf{F}	ti0_ti1_	$\mathrm{C}_{10}\mathrm{H}_{11}\mathrm{Br}_{2}\mathrm{O}_{2}^{\mathrm{a}}$	
10G	p-ClCalL	Br	$(CH_2)_{a}$	E	7.5 - 7.6	$\mathrm{C}_{11}\mathrm{H}_{12}\mathrm{BrClO}_{2}^{*}$	
107	p-FC ₆ H ₂	Br	$(CH_2)_0$	Б	50-51	$C_{11}H_{12}BrFO_2$	С, Н
108	0-CH ₂ C ₀ H ₄	Br	$(CH_2)_2$	E	44 4.5	$C_{31}H_{GBr}O_{2}$	С, Н
109	uu-CH ₃ C ₆ H ₂	Br	$(CH_2)_2$	E	58-59	$C_{14}H_{16}BrO_2$	С, П
110	p-CH ₃ C ₆ H ₄	Br	$(CH_2)_2$	E	$135 \cdot 137 \ (2.5)$	$C_{11}H_{15}BrO_2$	С, Н
111	o-CH ₃ OC ₆ H ₄	Br	$(CH_2)_2$	Æ	102 - 103	$\mathrm{C}_{11}\mathrm{H}_{13}\mathrm{BrO}_{3}$	C, Π
112	m-CHaOC ₆ H _c	Br	$(CH_2)_2$	Б	60-61	$C_{11}H_{13}BrO_3$	С, Н
113	p-CH _a OC ₆ H ₂	Br	$(CH_2)_2$	E	71-72	$\mathrm{C}_{21}\mathrm{H}_{13}\mathrm{Br}\mathrm{O}_3$ *	С. Н
114	p-CIC ₆ H ₃	\mathbf{Br}	$CH(CH_3)CH(CH_3)$	E	65-66	$C_{c2}H_{14}BrClO_2$	C, H
115	2- Thienyl	1-1m	$(CH_2)_2$		165 - 164	$C_{11}H_{12}N_2O_2S \cdot HNO_3$	С, Н
116	$2,3,4$ - $Cl_{\theta}C_{\theta}H_{2}$	I-Im	(CH_)		195 - 196	$C_{13}H_{11}CI_3N_2O_2 \cdot HNO_3$	С, Н, N
117	2.5 - $\mathrm{Cl}_2\mathrm{C}_6\mathrm{H}_3$	l-Ini	$(CH_2)_2$		185 - 186	$C_{1a}H_{12}CI_2N_2O_2 \cdot HNO_a$	С. Н
118	p-BrC ₆ H _c	1-1m	$(CH_2)_2$		212-213	$\mathrm{C}_{13}\mathrm{H}_{13}\mathrm{BrN}_2\mathrm{O}_2\cdot\mathrm{HNO}_3$	С, Н, Х
119	∂-CIC ₀ H₄	1-Ini	$(CH_2)_2$		207 - 208	$\mathrm{C}_{13}\mathrm{H}_{13}\mathrm{CIN}_2\mathrm{O}_2\cdot\mathrm{HNO}_3$	C, H, N
120	m-CIC ₀ H ₂	I-Im	$(CH_2)_2$		174-175	$\mathrm{C}_{13}\mathrm{H}_{13}\mathrm{CIN}_{2}\mathrm{O}_{2}\cdot\mathrm{HNO}_{3}$	С. Н, Х
121	p-ClC ₆ H ₂	$1\text{-}\mathrm{Im}$	$(CH_2)_2$		$199 \cdot 200$	$C_{4a}H_{2a}CIN_2O_2 \cdot HNO_a$	С, Н
122	$p ext{-}\mathrm{FC}_6\mathrm{H}_4$	1-Im	$(CH_2)_2$		197-198	$C_{13}H_{13}FN_2O_2 \cdot HNO_3$	С. Н, N
125	p-NO ₂ C ₆ H ₄	1-Im	$(CH_2)_2$		189-191	$C_{13}H_{13}N_3O_4 \cdot HNO_3$	C, H, N
124	C ₆ H _a	1-Im	$(CH_2)_2$		77-78	$\mathrm{C}_{13}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{2}$	C, H
125	p-CIC ₆ H ₄	1-Im	$(CH_2)_a$		205-206	$C_{14}H_{15}CIN_2O_2 \cdot HNO_3$	С, Н
126	p-FC ₆ H ₄	1-Im	$(CH_2)_8$		194 - 195	$C_{10}H_{15}FN_2O_2$ HNO ₃	C, H, N
127	ρ -CH ₃ C ₆ H,	l-Iai	$(CH_2)_2$		218-219	$C_{14}\Pi_{16}N_2O_2\cdot HNO_3$	С, Н
128	m-CH ₃ C ₅ H;	I-Im	$(CH_2)_2$		161-162	$C_{14}H_{16}N_2O_2 \cdot HNO_3$	C, H
129	p-CH ₃ C ₆ H ₄	l-Im	$(CH_2)_2$		186-187	$C_1 H_{16} N_2 O_2 \cdot H N O_3$	С, Н
3 0	o-CH ₃ OC ₆ H ₄	1-111	$(CH_2)_2$		158-159	$C_{14}H_{46}N_2O_3$ · HNO ₃	C. H, N
131	m-CH ₃ OC ₆ H ₄	1 - I m	$(CH_2)_2$		161 162	$C_{4}H_{16}N_{2}O_{3}\cdot HNO_{3}$	C, H
132	p-CH ₃ OC ₆ H ₄	1-110	$(CH_2)_2$		213 214	$C_{40}H_{14}N_2O_{31}$ HNO_{31}	C, II, N
133	p-CIC ₆ H	1-Im	CH(CH ₀ CH(CH _a) -		199-200	$C_{15}H_{17}CIN_2O_3 \cdot HNO_3$	C, H, N
134	p-CIC ₆ H ₄	1-Im	$\rm CH(\rm CH_a)\rm CH_2$		195-196	$C_{14}H_{15}CIN_2O_2/HNO_3$	C_{i} H, N

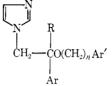
TABLE VI ANTIFUNGAI, APTIVITUES

N J	
N Ar	
$CH_{\chi}CHNH(CH_{2})_{0}A_{1}$	

	tioneesi le	vel of cond intó)	$s^{n,6} \mu g/m l$
1 'om1••)'	.17 . erereis	Т. энстич- 40 0 phytes	Т. спосит
59	X	Х	х
30, 36, 37, 51, 52	х	100	100
53, 35, 4144, 46,			
49, 53, 54	100	100	100
31, 38, 45, 47, 48	100	10	100
32	100	100	10
28, 29	100	10	10
40, 50	10	10	10
54	10	≤ 1	10

"The symbol "x" denotes partial growth at 100 μ g ml. "Figures preceded by "<" represent the lowest dose levels tested. "For structures, see Table III.


TAIGE VH


ANTIFUNGAL ACTIVITIES

	Lonest Je	= 1.(∞ est)eve) of co(a) inhib, $^{a,b}\mu$		
Coordin))L cunis	T. mentr- urophytes	Т. vubram	
131	Х	х	Х	
115, 123, 124, 126,				
129, 130, 132	100	100	100	
120, 127, 128	100	Ð	100	
118, 122, 125, 133	100	10	10	
117, 119, 121, 134	10	10	10	
116	[9	10	<1	

"The symbol "x" denotes partial growth at 100 μ g ml. "Figures preceded by "<" represent the lowest dose levels tested. "For structures, see Table V.

	\sim Lowest level of total inhib. ^{<i>a,b</i>} μ g/ml- \sim \sim \sim \sim \sim							
	С.	М.	T. menta-	T.	А.	Ε.	S.	
Compde	ulbicans	caniz	grophytes	rubrum	fumigatus	insidiosa	hemolyticus	
56	х	X	100	100	10	100	х	
58	х	100	100	100	10	X	x	
78	x	100	10	10	100	10	10	
82	Х	100	10	10	х	10	100	
70	х	10	10	10	100	10	10	
90	Х	10	< 1	<1	100	10	10	
94	Х	10	< 1	<1	10	10	10	
92	Х	<1	<1	<1	< 1	10	10	
74	100	100	10	10	100	10	10	
80	100	100	10	10	100	10	100	
83	100	100	10	10	100	10	100	
88	100	100	10	10	100	10	10	
89	100	100	10	10	100	10	10	
72	100	100	10	<1	100	10	10	
81	100	10	10	<1	10	10	10	
95	100	10	10	10	10	10	10	
87	100	10	10	10	100	10	100	
86	100	10	10	10	100	10	10	
69	100	10	10	10	100	10	10	
63	100	10	10	10	100	10	10	
62	100	10	10	10	10	10	10	
57	100	10	10	10	100	10	х	
55	100	10	<1	<1	100	0.1	10	
61	100	10	<1	<1	10	0.1	100	
7:3	100	10	<1	<1	<1	10	10	
77	100	10	<1	<1	10	10	10	
91	100	10	<1	<1	100	10	10	
13	100	10	<1	<1	10	10	10	
60	100	<1	0.1	0.1	10	0.1	<1	
84	100	10	0.1	0.1	10	0.1	<1	
64	100	10	0,1	0.1	10	0.1	10	
68	100	<1	<1	<1	<1	10	10	
85	100	<1	<1	<1	<1	10	100	
71	100	<1	<1	<1	10	10	10	
75	100	<1	0.1	0.1	<1	0.1	10	
66	100	0.1	0.01	0.1	<1	0.01	<1	
65	10	100	10	10	100	0.1	01	
59	10	<1	0.1	<1	10	0.01	0.0	
67	10	10	<1	0.1	10	0.1	10	
70	10	<1	0.1	0.1	<1	0.01	10	
76	10	<1	0.1	0.1	10	0.1	<1	
namte	x	100	10	<1	ro x	0.1 X		
naftae	x	x	10	<1	x	x	X	
seofnlvin	x	x 10	10	10	x	x X	X X	
eroł	X X	100	10	100	x x	x x	X X	
statin	35	333	333	333	x 333	А	А	

^a The symbol "x" denotes partial growth at 100 μ g/ml. ^a Figures preceded by "<" represent the lowest dose levels tested. ^c For structures, see Table IV.

34 and **40**). Alterations in the most promising compound **34** are permissible; these include replacement of phenyl by thienyl (**28**) or aliphatic homologation (**50**).

Ketals (Table VII) were also active against dermatophytes but not against yeasts or bacteria. Aromatic substitution increased inhibitory activity against dermatophytes (e.g., 124 vs. 117, 119, 121). Modification of the dioxolan ring, such as ring enlargement (125 and 126) or methyl homologation (133 and 134), was permissible. The ethers offered in Table VIII comprised by far the most interesting group. Not only were some members of this series highly active against dermatophytes, effecting total inhibition at dose levels as low as 0.01 μ g/ml, but they also exhibited excellent activity against *C. albicans* and against gram-positive bacteria. They were essentially inactive against *E. coli*. The activity against the yeast cells is particularly noteworthy, as few of the currently available antimycotic agents are effective against such infections. Our synthetic program was thereafter guided primarily by the anti C. albicans activity, with dermatophyte and bacterial inhibition playing an ancillary but, nonetheless, very desirable role.

The unsubstituted parent compound (78) was comparable in activity to the corresponding amines and ketals. However, whereas phenyl substitution in these latter types resulted in only moderately increased activity, incorporation of similar substituents in the ethers led to vastly enhanced potency. Compound 76 totally inhibited *C. albicans* at 10 μ g/ml. whereas 78 was effective only at $\pm 1000 \mu$ g/ml.

Highest potency was observed for combinations of *para* and *ortho-para* substituents, as exemplified by **59**, **65**, **67**, **70**, and **76**. Compounds bearing *ortho* substituents only, *e.g.*, **73**, **90**, and **94**, were generally less active. Ethers derived from tertiary alcohols, such as **79**, **82**, **83**, and **91**, also showed diminished activity.

It appears therefore that the ethers described above constitute a novel class of broad-spectrum antimycotic agents, which, moreover, are also highly active against gram-positive bacteria. Our *in vivo* test results will be reported elsewhere. The most promising candidates are undergoing clinical evaluation.

Experimental Section⁸

4'-Chloro-2-(1-imidazolyl)acetophenone (6) (Method A).—To a slurry of 350 g (5.2 moles) of inidazole in 250 ml of DMF at 5° was added portionwise and with stirring 234 g (1.0 mole) of 4'-chloro-2-bromoacetophenone while keeping the temperature below 15°. The solution was then stirred on ice for an additional 2 hr after which it was poured onto 5 I. of H₂O/I. of C₆H₆. The product was filtered off, washed with C₆H₆, and sucked as dry as possible. Adhering H₂O was best removed by means of azeotropic distillation with 1.5 I. of PhMe. When all H₂O had been removed, the hot solution was filtered to remove traces of quaternized material. Cooling, filtration, and washing with Et₂O gave 170 g (77%) of product, mp 155–157°. Recrystallization (MeCN) gave mp 160–160.5°.

2'-Chloro-2-(1-imidazolyl)acetophenone Nitrate (5) (Method B).—Br₂ (160 g, 1.0 mole) was added dropwise to a solution of 155 g (1.0 mole) of 2'-chloroacetophenone in 400 ml of Et₂O/200 ml of dioxane. The bromination was initiated at room temperature and was then carried through at 5-10°. Upon rompletion of the addition, 350 g (5.2 moles) of imidazole in 500 ml of MeOH was introduced with cooling. After 18 hr, 1.24 of H₂O was added and the product was extra-ted into CHCl₃. Successive additions of 14 of AcMe and excess HNO₃ to the organic phase gave 194 g (69%) of 5, mp ~175°. Recrystallization (95°, EtOH) gave platelets, mp 179–180°.

2-(1-Imidazolyl)propiophenone Nitrate (9).— A mixture of 9.3 g (0.05 mole) of 8, 2.5 g (0.052 mole) of 50% NaH dispersion, and 25 mI of HMPA was stirred at 5~10° for 1 hr, and then at 45° for another hr. To the renooled mixture was alled 8 g (0.057 mole) of MeI, and the reartion was allowed to proceed for 18 hr at room temperature. Addition of H₂O, extraction of the basic fraction with Et₂O, and introduction of HNO₃ to the dried organic phase gave 7.2 g (55%) of product after recrystallization (MeOH-AcMe-i-Pr₂O), mp 139–140°. This material was in all respects identical with the product of the organic phase gave (nethod A).

 α -Phenylimidazole-1-ethanol³ (21).--A solution of 140 g (2.05 nulles) of imidazole in 500 nl of absolute EtOH containing 8 ml of C₅H₅N was brought to \sim 75°, when 240 g (2.0 miles) of styrene oxide was introduced dropwise at such a rate that the temperature remained at 80-85°. Upon completion of the exothermic reaction, the temperature was allowed to drop to 50°. Approximately 500 ml of *i*-Pr₂O was added and the mixture was poured into 1.1.

of H₂O. Cooling, filtration, and washing (CH₅COUH₅, Er₂U) gave 147 g (39%) of off-white product, up 149–150°.

 α -(o-Methoxyphenyl)imidazole-1-ethanol Hydrochloride (26) (Method C), --A 12-g portion of NaBH₄ (0.30 mole) was added portionwise to a solution of 110 g (0.52 mole) of 12 in 500 ml of MeOH at 5-10°. After 1 hr the mixture was reflaxed for an additional 1 hr, after which 400 ml of solvent was taken off and replaced with 400 ml of H₂O. Achilfration (HC1), reflaxing (15 min), and basification then gave 98 g of solid product. The HCI salt (05% EtOH-AcMe-i-Prg9) had mp 175-174°.

 α -(*p*-Chlorophenyl)imidazole-1-ethanol (19) (Method D). To a solution of 25.3 g (1.1 g-atoms) of Na in 500 ml of MeOH was added 75 g (1.1 moles) of imidazole in 100 ml of MeOH. The solvent was taken off until the internal temperature reached 85°, and 500 ml of DMF was then introduced. Solvents were again removed until the internal temperature reached 125°. A solution of 203 g (0.86 mole) of α -brimomethyl-*p*-chlorobrozyl alcohol in 250 ml of C₆H₄ was introduced at such a root that solvents distilled off at 100–125° (internal temperature). The heat source was removed and stirring was continued for 10 min; DMF (250 ml), H₂O (500 ml), and 1 g of NaBH₄ were added at this point, the latter serving to decolorize the mixture. Addition of mori H₂O to the cloud point at 100° initiated crystallization. The product was filtered off, washed with H₂O then Et₂O, and dried; yield 156 g (83%), mp 185.5–184°.

2-(1-Imidazolyl)acetophenone Oxime. A solution of 55 g (0.295 mole) of **8**, 29.9 g (0.435 mole) of NH₂OH (IICI, and 500 ml of 95% EtOH was brought to pH 14 with 15 N NaOH. After refluxing for 3 hr, the solvent was removed, H₂O was added, and trace impurities were filtered off. The filtrate was then rendered and to congo red and basified with NaHCO₃. Cooling, filtration, and rerrystallization (*i*-PrOH-*i*-Pr₂O) gave 45 g (76%) of product, up 165–166°. Anal. (CnH_nN₃O) C, H.

1-(β-Aminophenethyl)imidazole Dihydrochloride (A, X = NH₂), --A mixture of 44 g (0.22 mole) of the above txime in 250 mI of 95% EtOH containing ~30 g of Raney Ni was hydrogenated at an initial pressure of 3.5 kg/cm². Upon completion of the H₂ uptake (36 hr) the catalysl was removed and the solvent was evaporated. Distillation of the residue gave 31 g (70%) of amine, bp 172-175° (0.2 mm). The 2HCI salt, recrystallized (95% EtOH -AcMe₈), had mp 234-236°. *Aual.* (C₁₀H₁₈N₈·2HCI) (C, H, N.

1-(β -Benzylaminophenethyl)imidazole Dihydrochloride (37). A solution of 37.2 g (0.20 mole) of 8, 23 g (0.215 mole) of benzylamine, 1.0 g of *p*-toluenesulfonic arid (TSA), and 150 ml of PhMe was refinxed with azeotropic H₂O removal for 3 hr. The solvent was evaporated and replaced with 150 ml of MetDH. To the ice-cold solution was added portionwise 3.0 g (0.075 mole) of NaBH₄, whereupon the mixture was stirred overnight. H₂O (200 ml) was then added, the pH was brought to 8 (concentrated HCl), and 200 ml of solvent was taken off. The mixture was made strongly acid and then refluxed for 15 min. Cooling caused deposition of solid by-product, which was filtered off. Basilication of the filtrate, extraction of the product into C₄H₆, drying of the organic phase, and solvem removal left an oily base. An alcoholic solution of the latter, upon treatment with *i*-DrOH HCG gave 43 g (62%*i*) of product, mp 245-248⁵.

1-[β -(p-Chlorobenzyloxy)phenethyl[imidazole Nitrate (77). Compound 21 (80 g, 0.425 mole) in 250 ml of HMPA was introducted dropwise into a similary of 22 g (0.46 mole) of Null dispersion in 100 ml of HMPA (containing antiform) at 5 10° and was stirred till H₂ evolution reason. This initiate was then warmed to 50° for 1 hr. To the recooled mixtore was added, portionwise, 80 g (0.50 mole) of α, p -flichlorotoluone, while keeping the temperature below 25°. After 1 hr at 25° and theo 1 hr ao 45°, 11,2) was added and the product was extended into Eq.0. Addition of a slight excess of HNO₂5 or the organic phase gave the product, which after fibration and primation (50' ϵ Et₂O-AcMc) bad upp 152-134°, yield 152 g (82%).

1- ${}^{1}\beta$ -(*p*-Nitrophenoxy)-2.4-dichlorophenethyl|imidazole Nitrate (**57**). To an H₂O-free mixture of DMF-C₅H₈ (50:25 ml) containing 3.4 g (0.07 mole) of 50% NaH dispersion, was added 8.7 g (0.031 mole) of **16**. Stirring was routhousd till H₂ evolution ceased, whereupon 5.0 g of MnO₂ and 8.0 g of *p*-ndtrofhorehenzene were introduced while cooling the mixture or circ. After 3 hr at room temperature, the solids were removed by lifeation through Hydlow. The filtrate was then diluted with H₂O and extracted with C₄H₆. Drying and stripping of the organic phase left a residual oil, which was taken up in CH₃COCH₃ and treated

⁽⁸⁾ Melting points (taken no a Fisher-Johns Dinck) and boiling points are mecorrected. Analyses are given in the tables. Analytical results therein pertain to those elements whose values fall within $\pm 0.4\%$ of the theoretical values.

with a slight excess of HNO₃. Filtration of the product (8.0 g) and recrystallization (MeOH-i-Pr₂O) gave 5.2 g, mp 169–170°.

1-[β -(p-Aminophenoxy)-2,4-dichlorophenethyl]imidazole (58). —A 20-g (0.053 mole) portion of 57 (base) was added to a refluxing mixture of 13.5 g of Fe dust, 10.6 g of NH₄Cl, and 150 ml of H₂O. Refluxing was continued for 6 hr. To the cooled mixture was added 100 ml of CH₂Cl₂, and solids were removed by filtration. Stripping of the dried organic phase left crude product, furnishing 10.0 g of amine after recrystallization from *i*-Pr₂O; mp 95-96°.

2-(Bromomethyl)-2-(p-chlorophenyl)dioxolane⁶ (10) (Method F).—Br: (320 g, 2.0 moles) was introduced dropwise to a solution of 310 g (2.0 moles) of 4'-chloroacetophenone in 600 ml of ethylene glycol at 75°. The colorless mixture was subsequently stirred for 1 hr at 5°. The crude filtered product was taken up in 1 l. of CH₂Cl₂ and washed with dilute NaOH. Drying, removal of solvent, and recrystallization of the residue from MeOH gave 465 g (84%) of the product, mp 61–62°.

2-(Bromomethyl)-2-(*m*-methoxyphenyl)dioxolane (112) (Method E).—3'-Methoxyacetophenone (150 g, 1.0 mole) in Et₂O-dioxane (400:200 ml) was brominated [160 g (1.0 mole) of Br₂] at $\hat{\mathfrak{o}}^{\circ}$. To the decolorized mixture was added 250 ml of ethylene glycol, whereupon solvents were removed till the temperature reached 150°. The solution was cooled, 1 l. of C₆H₆ and 5 g TSA were added, and H₂O was removed azeotropically for 18 hr. Washing of the solution with dilute NaOH, drying of the C₆H₆ phase, and removal of the solvent left crude product; this was purified by distillation over 10 g of K₂CO₃, giving 120 g of product, bp 145–155° (1.4 mm). The distillate solidified on standing and was triturated with *i*-PrOH to give 102 g of material, mp 60–61°.

1-[2-(p-Chlorophenyl)-1,3-dioxolan-2-ylmethyl]imidazole Nitrate (121).—To a solution of sodium imidazole (1.5 moles) in 500 ml of DMF (see preparation of 19) was added 277 g (1.0 mole) of 101, whereupon the solution was kept at 140–145° for 4 hr. Dilution of the mixture with H₂O and subsequent cooling caused deposition of the product base. This was filtered off, dissolved in AcMe-*i*-Pr₂O, and treated with a slight excess of HNO₃, giving 290 g (88%) of product, mp 199–200°.

Acknowledgment.—We thank the "Instituut tot Aanmoediging van het Wetenschappelijk Onderzoek in Nijverheid en Landbouw" for financial support. Analytical determinations were performed by Messrs. A. Sels and W. Verkest. It gives the senior author great pleasure to thank Dr. A. E. F. Chandler for helpful suggestions in the preparation of the manuscript.

Imidoylureas. A New Class of Anthelmintics

GUY D. DIANA, ALLEN YARINSKY, ETHEL S. ZALAY, DICRAN A. BERBERIAN, AND SAMUEL SCHALIT

Sterling-Winthrop Research Institute, Rensselaer, New York

Received March 13, 1969

A series of imidoylureas have been synthesized and examined for antihookworm activity in dogs. Among the various types prepared, the alkylimidoyl-substituted phenylureas were found most active, and 1-(p-chloro-phenyl)-3-pentanimidoylurea was selected as the compound of choice, effective in a single dose of 10 mg/kg.

It has been estimated that more than one-fourth of the world's human population is infected with one or more intestinal nematodes.¹ The consequences of severe and widespread infections with the hookworms Ancylostoma duodenale and/or Necator americanus are well documented.²⁻⁴ Because remedies currently employed in the treatment of these infections leave much to be desired we have been engaged in the synthesis of compounds with potential antihookworm properties.

In the course of screening compounds in dogs against Ancylostoma caninum and/or Uncinaria stenocephala, it was discovered that a series of imidoylureas of the general formula, $R_1C(=NR_2)NHCONR_3R_4$, and related structures exhibited interesting activity.

Chemistry.—All of the compounds in Table I with the exception of 24 and 25 were prepared by treatment of equivalent amounts of the appropriate amidine hydrochloride and isocyanate in acetone or chloroform in the presence of a base such as Et_3N or Na in acetone.

$$R_{t}C(=NR_{2})NH_{2} \cdot HCl \xrightarrow{R_{3}N=CO} R_{1}C(=NR_{2})NHCONR_{4}R_{3}$$

The synthesis of compounds 33 and 34 was initiated from the thioamide⁵ I which was treated with ethyl

SCHEME I $RCSNH_2$ + $BrCH_2COCOOC_2H_5$ Τ COOC.H NH₄OH =NH O COOC₂H₅ ·HBr Ш Π CH₃OH or NaOCH₃ CONH. R $C_6H_4SO_2C$ IV v NH₄C) ĮΗ COCH. NH_2 HCI VI VIIa, R = Hb. $R = CH_0$

bromopyruvate to produce the keto ester II (Scheme I). The latter was not isolated but immediately converted to the thiazole III.⁶ Compound III was converted to the amide IV⁷ by treatment with NH₄OH, and IV was then dehydrated to the nitrile V.⁸ In the case of IV ($\mathbf{R} = \mathbf{CH}_3$), dehydration was achieved with benzene-sulfonyl chloride⁹ in 65% yield. However, under these

- (6) M. Erne, F. Ramirez, and A. Burger, ibid., 38, 143 (1955).
- (7) H. Erlenmeyer and C. J. Morel, *ibid.*, 28, 362 (1945).
- (8) R. Menassé, B. Prijs, and H. Er)enmeyer, *ibid.*, 40, 554 (1957).
- (9) C. R. Stephens, E. J. Bianco, and F. J. Pilgrim, J. Am. Chem. Soc., 77, 1701 (1955).

 ^{(1) (}a) N. R. Stoll, J. Parasitol., 33, 1 (1947); (b) WHO Chronicle, Vol. 22, World Health Organization, Geneva, 1968, p 289.

⁽²⁾ P. C. Beaver, Public Health Papers No. 10, World Health Organization, Geneva, 1961.

⁽³⁾ E. C. Faust and P. F. Russell, "Clinical Parasitology," C. F. Craig and E. C. Faust, Ed., Lea and Febiger, Philadelphia, Pa., 1964.

⁽⁴⁾ M. Roche and M. Layrisse, Am. J. Trop. Med. Hyg., 15, 1032 (1966).
(5) H. Erlenmeyer and K. Menzi, Helv. Chim. Acta, 31, 2065 (1948).